

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 178 (2005) 2390-2393

www.elsevier.com/locate/jssc

SOLID STATE CHEMISTRY

JOURNAL OF

Rapid communication

Magnetic iron nitride nanodendrites

Minhua Cao^{a,*}, Tianfu Liu^b, Genban Sun^b, Xinglong Wu^a, Xiaoyan He^a, Changwen Hu^{a,b}

^aInstitute of Polyoxometalate Chemistry, Northeast Normal University, Changchun 130024, PR China ^bDepartment of Chemistry, Beijing Institute of Technology, Beijing 100081, PR China

Received 28 March 2005; received in revised form 24 April 2005; accepted 30 April 2005 Available online 1 June 2005

Abstract

We report the synthesis of Fe₃N nanodendrites directly by reduction-nitriding of α -Fe₂O₃ nanopine dendrites in a mixed stream of H₂-NH₃. Fe₃N basically retains dendritic morphology of the starting material α -Fe₂O₃. It is found that nanorod branches of Fe₃N dendrites have relatively uniform diameters and are evenly distributed at both sides of the stem with a periodicity of about 50 nm. The diameters of the nanorods are about 50 nm, and their lengths range from 50 to 1000 nm. Fe₃N nanodendrites show a rapid saturation of magnetization of 104 emu/g at 300 K, as expected for a magnet. © 2005 Elsevier Inc. All rights reserved.

Keywords: Iron nitride; Nanodendrites; Magnetic; Nitridation

In recent years, anisotropic growth of nanomaterials have generated a wide variety of nanostructures, including tubes/wires/rods [1,2], cubes [3,4], nanodisks [5], dendrites [6], prisms [7], tetrapods [8] and so on, and some of them have been shown to display unique physical properties. It is generally believed that intrinsic properties of a nanostructure are mainly determined by its size, shape, composition, crystallinity, and crystal structure, in which the shape is thought to be one of the most important factors. Especially for a magnetic nanostructure, controlling its shape is of crucial importance as shape may lead to anisotropic magnetic properties of a nanomaterial, which are necessary for magnetic nanomaterials to be ferromagnetic at room temperature. Iron nitrides (FeN_x) have attracted intensive attention due to their diverse structures and potentially technological applications. In particular, those with small N contents have been investigated as materials for advanced magnetic data storage applications [9]. In this respect, nanoscale iron nitrides with anisotropic growth may offer greater potential as building blocks for applications in nanodevices. How-

E-mail address: caomh043@nenu.edu.cn (M. Cao).

ever, very few studies on their synthesis and magnetic properties have been reported to date [9–12]. Among several reported synthesis methods, reduction-nitriding is a simple and convenient method to synthesize iron nitrides [9]. Recently, our group has successfully synthesized magnetic α -Fe₂O₃ nanopine dendrites using a hydrothermal method [13], therefore, it is necessary to further treat the resulting α -Fe₂O₃ nanopine dendrites to obtain the desirable products and morphologies. In this letter, we report the fabrication of magnetic iron nitride nanodendrites by dealing with the as-synthesized α -Fe₂O₃ nanopine dendrites under a mixed stream of H₂-NH₃. By precisely controlling the reduction-nitriding temperature and the volume ratio of H₂ to NH₃, we were able to synthesize Fe₃N with dendritic morphology and Fe₄N with conglomeration, respectively.

The starting material α -Fe₂O₃ nanopine dendrites were synthesized under hydrothermal conditions at 140 °C [12]. In a typical synthesis of iron nitrides, α -Fe₂O₃ powers were loaded into a quartz tube, which was centered into a horizontal tube furnace, through which a H₂/NH₃ mixture with the volume ratio of 1:2 was passed, and the reaction was kept at 500 °C for 4 h. After the reduction-nitriding process was finished, black Fe₃N powder was formed. When the H₂/NH₃ mixture with the

^{*}Corresponding author. Fax: +864315663503.

^{0022-4596/}\$ - see front matter O 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2005.04.035

volume ratio of 1:1 was used and the reaction was kept at 600 °C for 4 h, Fe₄N was obtained. The compositional analysis of samples was examined using an X-ray diffractometer with CuKa radiation. The morphology and microstructure of samples were obtained by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution TEM (HRTEM). The magnetization data of the samples were collected over the temperature range of 5–300 K using a Quantum Design MPMS-5S super-conducting quantum interference device (SQUID) magnetometer.

Fig. 1 shows the X-ray diffraction patterns of the samples obtained under the above two reaction conditions. The strong diffraction peaks in Fig. 1b can be indexed to hexagonal Fe₃N with lattice constants a =2.695 A and c = 4.362 A (JCPDS 01-1236), while those in Fig. 1c can be indexed to the cubic Fe₄N with lattice constant a = 3.790 A (JCPDS 8-19); these results are consistent with those of Fe₃N and Fe₄N bulk crystals [14], respectively. In addition, there existed several very weak peaks in XRD images, which can be indexed to the α -Fe₂O₃. This is due to the incomplete reductionnitriding of the starting material α -Fe₂O₃ resulting from the inexact apparatus used. If a precision apparatus can be available, pure iron nitride would be obtained.

Fig. 2 shows the SEM and TEM images of the starting material α -Fe₂O₃ nanopine dendrites prepared by simple hydrothermal method. The low magnification image in Fig. 2 shows that the starting material consists almost entirely of dendritic structures. A single dendrite

(a)

(b)

Fig. 1. XRD images of α -Fe₂O₃ nanopine dendrites (a), Fe₃N nanodendrites (b), and Fe₄N particles (c).

ntensity (a.u.)

30

5

7

40

200

50

Fig. 2. (a) SEM image of α -Fe₂O₃ nanopine dendrites. (b) SEM image of a single α -Fe₂O₃ nanopine dendrite. (c) TEM image of a single α -Fe₂O₃ nanopine dendrite.

shown in Fig. 2b and c displays an evident fractal structure characteristic, with an outstanding stem and highly ordered branches distributed at both sides of the stem. Similarly, each branch of the dendrite also displays such structural characteristic.

When the starting material α -Fe₂O₃ nanopine dendrites were treated by a reduction-nitriding process at 500 °C, Fe₃N was obtained, which has been determined by XRD image. Fig. 3a shows the low magnification TEM image of Fe₃N sample. It is evident that the product is dominated by dendritic structures. The high magnification in Fig. 3b shows the morphology of a single dendrite. It can be found that the morphology of Fe₃N, compared to that of the starting material α -Fe₂O₃, changes largely, and an evident transition from hyperbranched dendrites for α -Fe₂O₃ to nanorod branched dendrites for Fe₃N is observed, which may result from the high-temperature treatment. In this process, Fe₃N basically retains the dendritic morphology of the starting material but without fractal structure characteristic. It can be seen from the TEM image that nanorod branches of Fe₃N dendrites have relatively uniform diameters and are evenly distributed at both sides of the stem with a periodicity of about 50 nm. The

60

2θ (degree)

220

70

80

90

Fig. 3. (a) Low magnification TEM image of Fe_3N nanodendrites. (b) TEM image of a single Fe_3N nanodendrite. (c) Enlarged nanodendrite recorded in (b). (d–f) HRTEM images recorded in different regions of the dendritic structure in (c). (g) SAED image recorded on the entire dendritic structure in (b).

diameters of the nanorods are about 50 nm, and their lengths range from 50 to 1000 nm. The microstructure of the dendrites was further examined by HRTEM and SAED. Fig. 3d–f shows HRTEM images taken in different areas on a single dendrite as shown in Fig. 3c. It is clear that all of them show clear lattice fringes, indicating the single-crystalline nature of the whole dendrite. The lattice spacing of 2.089 Å between adjacent lattice planes in each of these images corresponds to the distance between two (101) crystal planes, indicating that both the stem and all branches of Fe₃N dendrite is oriented in [101] direction. The SAED taken on the same dendrite but at different areas all shown the same image as shown in Fig. 3g, also confirming the single-crystalline nature of the dendrite.

When the starting material α -Fe₂O₃ nanopine dendrites were treated at 600 °C, Fe₄N was formed as confirmed by XRD image. The reduction-nitriding temperature had to be higher than 600 °C, otherwise impurity product was obtained. The TEM image of Fe₄N samples is shown in Fig. 4. It is clear that the samples were large irregular aggregates of roughly spherical particles instead of dendrites. The reason

Fig. 4. TEM image of Fe₄N particles.

may be that α -Fe₂O₃ nanopine dendrites partly sintered in the process of high-temperature reactions, resulting in the agglomeration of the product.

The field dependence of the magnetization (0-50 kOe) for Fe₃N nanodendrites measured at 300 K (Fig. 5), shows a rapid saturation of magnetization, as expected for a magnet. The saturation magnetization reaches a value of 104 emu/g, lower than the literature value [10].

Fig. 5. Field dependence of magnetization for Fe_3N, \Box at 5K, \bigtriangleup at 300 K.

Fig. 6. Hysteresis loop curves measured on Fe₃N nanodendrites, \circ at 300 K, \triangle at 5 K, respectively. The inset is a blow-up in the region of -5 to 5 kOe at 300 K.

The magnetization reaches 140 emu/g before 25 kOe, then it increases rapidly to 190 emu/g at 45 kOe measured at 5K. A hysteresis loop at 5 and 300K (Fig. 6) for Fe₃N is observed. The coercive force and remanent magnetization of Fe₃N are 226 Oe and 19.6 emu/g, respectively, which can be clearly observed in the region of -5 to 5 kOe at 300 K (inset of Fig. 6). The existence of hysteresis loop for Fe₃N nanodendrites can be explained by the incomplete conversion from α -Fe₂O₃ to Fe₃N during the reduction-nitriding procedure. At 300 K, antiferromagnetic interaction of small residue α - Fe_2O_3 can be ignored. At low temperature (5K), the increase of saturation magnetization may be caused by nanosize effect of small residue α -Fe₂O₃, although it has not found phase translation from antiferromagnetism to paramagnetism or superparamagnetic phenomenon [13] in pure α -Fe₂O₃ nanopine dendrites. The coercive force and saturation magnetization of the Fe₃N nanodendrites are different from those of Fe₃N nanoparticles

obtained using Fe_3O_4 or γ - Fe_2O_3 as the starting materials [9,10] which indicates that magnetization of Fe_3N sample is shape-dependent.

In summary, dendritic iron nitrides have been prepared through a reduction-nitriding process by using α -Fe₂O₃ nanopine dendrites as starting material. By precisely controlling the reduction-nitriding temperature and the volume ratio of H₂ to NH₃, Fe₃N with dendritic shape and Fe₄N with conglomeration were obtained, respectively. The synthesized dendritic Fe₃N are singlecrystal. Fe₃N nanodendrites have a low saturation magnetization of 104 emu/g at 300 K, whereas at low temperature (5K), Fe₃N nanodendrites show an increase of saturation magnetization, which may be caused by nanosize effect of small residue α -Fe₂O₃.

Acknowledgment

This work was supported by the Natural Science Fund Council of China (NSFC, Nos. 20331010, 20271007, 90406002 and 20401005) and Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP, No. 20030007014). This work was supported also by Jilin Distinguished Young Scholars Program and the Natural Science Young Foundation of Northeast Normal University.

References

- [1] S. Iijima, Nature 354 (1991) 56.
- [2] X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature 404 (2000) 59.
- [3] Y.G. Sun, Y.N. Xia, Science 298 (2004) 2176.
- [4] F. Dumestre, B. Chaudret, C. Amiens, P. Renaud, P. Fejes, Science 303 (2004) 821.
- [5] C.X. Xu, X.W. Sun, Z.L. Dong, M.B. Yu, Appl. Phys. Lett. 85 (2004) 3160.
- [6] H. Yan, R. He, J. Johnson, M. Law, R.J. Saykally, P.D. Yang, J. Am. Chem. Soc. 125 (2003) 4728.
- [7] R.C. Jin, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng, Science 294 (2001) 1901.
- [8] L.M. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Nat. Mater. 2 (2003) 382.
- [9] D. Andriamandroso, L. Fefilatiev, G. Demazeau, L. Fournès, M. Pouchard, Mater. Res. Bull. 19 (1984) 1187.
- [10] Z.Q. Yu, J.R. Zhang, Y.W. Du, J. Magn. Magn. Mater. 159 (1996) L8.
- [11] X.L. Wu, W. Zhong, N.J. Tang, H.Y. Jiang, W. Liu, Y.W. Du, J. Alloys Compd. 385 (2004) 294.
- [12] D. Li, C.J. Choi, J.H. Yu, B.K. Kim, Z.D. Zhang, J. Magn. Magn. Mater. 283 (2004) 8.
- [13] M.H. Cao, T.F. Liu, S. Gao, G.B. Sun, C.W. Hu, Z.L. Wang, Angew. Chem. Int. Ed. (2005), in press.
- [14] H. Jacobs, D. Rechenbach, U. Zachwieja, J. Alloys Compd. 227 (1995) 10.